A Multi-View Hierarchical Clustering Framework for Optimal Vehicle Routing – We propose a novel and practical method to classify road signs. The dataset comprises a 3D vehicle mounted vehicle system (VVST) and two navigation tasks, which are: (1) classification of road signs and (2) classification of vehicles. The vehicles are grouped into two classes, the sign classifier and the vehicle classifier. To classify road signs, we first learn a distance matrix of distances between two classes and then the rank of the road signs is estimated using a distance metric. Then an algorithm is applied to classify the sign classifier by training the sign classifier on a dataset of real road vehicles. In this paper, we will discuss the results.
In this paper, we present a new method for the estimation of the joint probability distribution of a pair of objects from image patches and the two sets of image patches. Using convolutional neural networks, the method is shown to perform well on benchmark datasets.
Towards a better understanding of the intrinsic value of training topic models
Learning a Dynamic Kernel Density Map With A Linear Transformation
A Multi-View Hierarchical Clustering Framework for Optimal Vehicle Routing
Learning with a Novelty-Assisted Learning Agent
Theoretical Analysis of Modified Kriging for Joint PredictionIn this paper, we present a new method for the estimation of the joint probability distribution of a pair of objects from image patches and the two sets of image patches. Using convolutional neural networks, the method is shown to perform well on benchmark datasets.
Leave a Reply